Penalized Regression Models with Autoregressive Error Terms
نویسندگان
چکیده
Penalized regression methods have recently gained enormous attention in statistics and the field of machine learning due to their ability of reducing the prediction error and identifying important variables at the same time. Numerous studies have been conducted for penalized regression, but most of them are limited to the case when the data are independently observed. In this paper, we study a variable selection problem in penalized regression models with autoregressive error terms. We consider three estimators, adaptive LASSO (Least Absolute Shrinkage and Selection Operator), bridge, and SCAD (Smoothly Clipped Absolute Deviation), and propose a computational algorithm that enables us to select a relevant set of variables and also the order of autoregressive error terms simultaneously. In addition, we provide their asymptotic properties such as consistency, selection consistency, and asymptotic normality. The performances of the three estimators are compared one another using simulated and real examples.
منابع مشابه
Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کاملPenalized Estimators in Cox Regression Model
The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...
متن کاملEstimation of Spatial Regression Models with Autoregressive Errors by Two- Stage Least Squares Procedures: a Serious Problem
Time series regression models that have autoregressive errors are often estimated by two-stage procedures which are based on the Cochrane-Orcutt (1949) transformation. It seems natural to also attempt the estimation of spatial regression models whose error terms are autoregressive in terms of an analogous transformation. Various two-stage least squares procedures suggest themselves in this cont...
متن کاملPerformance of Likelihood-Based Estimation Methods for Multilevel Binary Regression Models
By means of a fractional factorial simulation experiment, we compare the performance of Penalised Quasi-Likelihood, Non-Adaptive Gaussian Quadrature and Adaptive Gaussian Quadrature in estimating parameters for multi-level logistic regression models. The comparison is done in terms of bias, mean squared error, numerical convergence, and computational efficiency. It turns out that, in terms of M...
متن کاملPenalized Quantile Regression Estimation for a Model with Endogenous Individual Effects
Abstract. This paper proposes a penalized quantile regression estimator for panel data that explicitly considers individual heterogeneity associated with the covariates. We provide conditions under which the estimator is asymptotically Gaussian, and the harshness of the penalization can be determined by minimizing asymptotic mean squared error. We investigate finite sample and asymptotic perfor...
متن کامل